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ABSTRACT: Android is an open source free operating system and it has support from 

Google to publish android application on its Play Store. Anybody can developed an android 

app and publish on play store free of cost. This android feature attract cyber-criminals to 

developed and publish malware app on play store. If anybody install such malware app then 

it will steal information from phone and transfer to cyber-criminals or can give total phone 

control to criminal’s hand. To protect users from such app in this paper author is using 

machine learning algorithm to detect malware from mobile app. To detect malware from app 

we need to extract all code from app using reverse engineering and then check whether app 

is doing any mischievous activity such as sending SMS or copying contact details without 

having proper permissions. If such activity given in code then we will detect that app as 

malicious app. In a single app there could be more than 100 permissions (examples of 

permissions are transact, API call signature, onServiceConnected, API call signature, 

bindService, API call signature, attachInterface, API call signature, ServiceConnection, API 

call signature, android.os.Binder, API call signature, SEND_SMS, Manifest Permission, 

Ljava.lang.Class.getCanonicalName, API call signature etc.) which we need to extract from 

code and then generate a features dataset, if app has proper permission then we will put value 

1 in the features data and if not then we will value 0. Based on those features dataset app will 

be mark as malware or good ware. 
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I. INTRODUCTION 

With the widespread adoption of 

Android devices, the threat of malware 

targeting these platforms has become a 

growing concern. Android malware poses 

significant risks to user privacy, security, 

and the overall functionality of devices. To 

combat this ever-evolving threat landscape, 

researchers and developers have turned to 

machine learning techniques as a promising 

approach for effective malware detection. 

Machine learning leverages algorithms and 

statistical models to analyze vast amounts of 

data and learn patterns, enabling automated 

decision-making processes. In the context 

of Android malware detection, machine 

learning models can be trained on extensive 

datasets comprising both benign and 

malicious applications. By learning from 

these examples, these models can identify 

and classify new and emerging malware 

strains with a high degree of accuracy. 

The use of machine learning techniques in 

Android malware detection offers several 

advantages. Firstly, it allows for efficient 

analysis of numerous features and attributes 

of mobile applications, such as 

permissions, API calls, code structures, and 

network behavior, enabling a 

comprehensive assessment of their 

potential malicious intent. Secondly, 

machine learning models can adapt to 

evolving threats, continuously improving 

their detection capabilities as they 

encounter new samples and patterns. This 

adaptability is crucial in an environment 

where malware authors constantly innovate 

and develop new techniques to evade 

detection. 

While machine learning-based detection 

systems have shown promising results, 

challenges persist. One such challenge is the 

need for constantly updated and diverse 

training datasets to ensure the models can 

accurately generalize and detect new malware 

variants. Additionally, striking the right 

balance between detection accuracy and 

minimizing false positives and false 

negatives remains an ongoing research focus. 

In this context, this paper examines the 

current state of Android malware detection 

using machine learning techniques. It 

explores the strengths and limitations of 

different algorithms, the importance of 

feature selection and engineering, and the 

potential for advancements in areas such as 

ensemble learning, adversarial machine 

learning, and real-time detection. By 

addressing these challenges and pursuing 

future enhancements, machine learning can 

play a crucial role in fortifying Android 

devices against malware threats and 

safeguarding user security and privacy. 

LITERATURE SURVEY 

"Deep Android Malware Detection" by 

Wei Wang et al. (2016) 

This paper proposes a deep learning 

approach for Android malware detection 

using recurrent neural networks. It focuses 

on extracting features from Android 

application packages and using them as 

inputs to train a deep learning model to 

classify malware samples. The study 

demonstrates the effectiveness of deep 
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learning in detecting Android malware. 

"Android Malware Detection using 

Hybrid Features Selection Technique" 

by Vivek Kumar et al. (2017) 

The authors propose a hybrid feature 

selection technique that combines 

information gain and genetic algorithm to 

select the most discriminative features for 

Android malware detection. The study 

evaluates the proposed technique on a 

dataset of real-world Android malware 

samples and achieves improved accuracy 

compared to other feature selection 

methods. 

"DroidDetector: Android Malware 

Characterization and Detection using 

Deep Learning" by Abbas Razaghpanah 

et al. (2018) 

This research work introduces 

DroidDetector, a system that combines 

static and dynamic analysis techniques with 

deep learning models for Android malware 

detection. The authors leverage 

convolutional neural networks (CNNs) to 

extract features from app metadata and 

utilize recurrent neural networks (RNNs) to 

capture dynamic behavioral patterns. 

Experimental results demonstrate the 

effectiveness of the proposed system. 

"Android Malware Detection using 

Machine Learning Techniques: A 

Systematic Literature Review" by Yee-

Yang Teing et al. (2018) 

This systematic literature review provides 

an overview of existing research on 

Android malware detection using machine 

learning techniques. It analyzes various 

aspects such as the datasets used, feature 

extraction methods, machine learning 

algorithms, and evaluation metrics 

employed in the studies. The review 

highlights the strengths and limitations of 

different approaches and identifies potential 

areas for future research. 

"Machine Learning-Based Detection of 

Android Malware using System Call 

Sequences" by Jonghoon Kwon et al. 

(2019) The paper proposes a machine 

learning- based approach for Android 

malware detection that utilizes system call 

sequences as input features. It employs 

different classification algorithms, including 

decision trees, random forests, and support 

vector machines, to analyze system call 

sequences extracted from Android 

applications. The study demonstrates the 

effectiveness of system call-based features 

for malware detection. 

"Android Malware Detection using 

Hybrid Machine Learning Methods" by 

Noorhanah binti Mustapha et al. (2019) 

The authors propose a hybrid machine 

learning approach for Android malware 

detection that combines static and dynamic 

analysis techniques. They employ a feature 

selection algorithm to extract relevant 

features from Android apps and apply 

different machine learning algorithms, such 

as decision trees, random forests, and k- 

nearest neighbors, to classify malware 

samples. The study evaluates the proposed 

approach on a real-world Android malware 

dataset and achieves high accuracy. 

"Detecting Android Malware using 

Ensemble Learning Techniques" by 
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Kamaldeep Kaur et al. (2020) 

This paper explores the application of 

ensemble learning techniques, including 

AdaBoost, bagging, and stacking, for 

Android malware detection. The authors 

combine multiple machine learning models 

to improve the overall detection accuracy 

and robustness. The experimental results 

demonstrate the effectiveness of ensemble 

learning in detecting Android malware. 

III. EXISTING SYSTEM 

 

Android Apps are freely available on 

Google Playstore, the official Android app 

store as well as third-party app stores for 

users to download. Due to its open source 

nature and popularity, malware writers are 

increasingly focusing on developing 

malicious applications for Android 

operating system. In spite of various 

attempts by Google Playstore to protect 

against malicious apps, they still find their 

way to mass market and cause harm to users 

by misusing personal information related to 

their phone book, mail accounts, GPS 

location information and others for misuse 

by third parties or else take control of the 

phones remotely. Therefore, there is need to 

perform malware analysis or reverse- 

engineering of such malicious applications 

which pose serious threat to Android 

platforms. Broadly speaking, Android 

Malware analysis is of two types: Static 

Analysis and Dynamic Analysis. Static 

analysis basically involves analyzing the 

code structure without executing it while 

dynamic analysis is examination of the 

runtime behavior of Android Apps in 

constrained environment. Given in to the 

ever-increasing variants of Android 

Malware posing zero-day threats, an 

efficient mechanism for detection of 

Android malwares is required. In contrast to 

signature-based approach which requires 

regular update of signature database 

 

IV PROPOSED SYSTEM: 

 

• Two set of Android Apps or APKs: 

Malware/Goodware are reverse 

engineered to extract features such as 

permissions and count of App 

Components such as Activity, 

Services, Content Providers, etc. These 

features are used as featurevector with 

class labels as Malware and Goodware 

represented by 0 and 1 respectively in 

CSV format. 

• To reduce dimensionality of feature-

set, the CSV is fed to Genetic Algorithm 

to select the most optimized set of 

features. The optimized set of features 

obtained is used for training two 

machine learning classifiers: Support 

Vector Machine and Neural Network. 
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In the proposed methodology, static features 

are obtained from AndroidManifest.xml 

which contains all the important 

information needed by any Android 

platform about the Apps. Androguard tool 

has been used for disassembling of the 

APKs and getting the static features. 

 

IV. SYSTEM ARCHITECTURE 

ALGORITHMS: 

 

SVM 

 

Support Vector Machine (SVM) is a popular 

machine learning algorithm that can be used 

for Android malware detection. Here's an 

overview of how SVM can be applied in this 

context: 

Dataset Preparation: First, a dataset needs to 

be prepared consisting of labeled samples of 

Android apps, where each sample is labeled 

as either benign or malware. The dataset 

should include relevant features extracted 

from the apps, such as permissions, API 

calls, code structures, or resource usage. 

Feature Vector Creation: Each app sample is 

represented as a feature vector, where each 

feature corresponds to a specific attribute 

extracted from the app. These features serve 

as inputs to the SVM algorithm. 

Feature Scaling: Before feeding the feature 

vectors into SVM, it's important to perform 

feature scaling to normalize the data. This 

step ensures that all features are on a similar 

scale and prevents certain features from 

dominating the learning process due to their 

higher magnitude. 

Model Training: The SVM algorithm is 

trained using the labeled dataset. The goal of 

SVM is to find an optimal hyperplane that 

separates the two classes (benign and 

malware) with the maximum margin. SVM 

can handle both linearly separable and non- 

linearly separable data by utilizing different 

kernel functions, such as linear, polynomial, 

or radial basis function (RBF) kernels. 

Model Evaluation: The trained SVM model 



 
 

 
 

 

89                                                    JNAO Vol. 15, Issue. 1, No.15 :  2024 

is evaluated using evaluation metrics such 

as accuracy, precision, recall, and F1-score. 

This evaluation provides insights into the 

model's performance in detecting malware 

and differentiating it from benign apps. 

Prediction and Detection: Once the SVM 

model is trained and evaluated, it can be 

used for predicting the class labels of new, 

unseen Android app samples. The model 

analyzes the feature vector of an app and 

assigns it a label (benign or malware) based 

on the learned decision boundary. 

Threshold Setting: Depending on the 

requirements, a threshold can be set to 

determine the confidence level above which 

an app is classified as malware. This 

threshold helps control the trade-off 

between false positives and false negatives, 

based on the specific needs and priorities of 

the application. 

SVM is a powerful algorithm for Android 

malware detection as it can handle high- 

dimensional feature spaces and non-linear 

relationships effectively. However, the 

choice of features, feature engineering 

techniques, and parameter tuning for SVM 

(such as selecting the appropriate kernel 

function) significantly impact the detection 

performance. Hence, experimentation and 

fine-tuning are essential to achieve optimal 

results. 

MODULES: 

 

In an Android malware detection system 

using machine learning, several modules can 

be identified to handle different tasks and 

responsibilities. Here are some key modules 

commonly found in such systems: 

Data Collection Module: This module is 

responsible for collecting a diverse dataset 

of Android applications, including both 

benign and malicious samples. It may 

involve web scraping, crawling app 

marketplaces, or utilizing third-party sources 

to gather a representative dataset for training 

and evaluation. 

Preprocessing Module: The preprocessing 

module performs initial processing on the 

collected dataset. It includes tasks such as 

decompiling the Android applications, 

extracting relevant information such as 

permissions, API calls, code structures, and 

manifest file data. 

Feature Extraction Module: The feature 

extraction module takes the preprocessed 

dataset and extracts informative features 

from the apps. It involves analyzing the 

extracted data to create feature vectors that 

represent various characteristics of the 

applications. These features can include 

static features (e.g., permissions, API calls) 

and dynamic features (e.g., network 

behavior, resource usage). 

Feature Engineering Module: The feature 

engineering module focuses on transforming 

and engineering the extracted features to 

enhance their discriminatory power. 

Techniques such as dimensionality 

reduction, feature selection, or creating new 



 
 

 
 

 

90                                                    JNAO Vol. 15, Issue. 1, No.15 :  2024 

features based on domain knowledge may 

be applied to improve the performance of 

the machine learning models. 

Machine Learning Model Training Module: 

This module trains the machine learning 

models using the preprocessed and 

engineered dataset. It includes selecting an 

appropriate algorithm (e.g., SVM, decision 

trees, neural networks) and configuring the 

model's parameters. The training process 

involves feeding the feature vectors along 

with their corresponding labels to the model 

for learning. 

Model Evaluation Module: The model 

evaluation module assesses the 

performance of the trained machine 

learning models. It uses evaluation metrics 

such as accuracy, precision, recall, F1-

score, and area under the receiver operating 

characteristic curve (AUC-ROC) to 

measure the model's effectiveness in 

detecting malware and differentiating it 

from benign apps. 

Real-time Scanning Module: The real-

time scanning module applies the trained 

machine learning models to perform the 

actual detection of malware in Android 

applications. It receives an input app, 

extracts its features, and passes them 

through the trained model for 

classification. The module outputs a 

prediction or probability score indicating 

the likelihood of the app being malicious. 

Feedback Module: The feedback module 

enables user feedback and incorporates it 

into the system to improve its 

performance. Users can report false 

positives or false negatives, providing 

labeled samples to update the models and 

enhance their accuracy over time. This 

module helps in continuously refining the 

detection capabilities of the system. 

These modules work together to create an 

effective Android malware detection 

system using machine learning. However, 

the specific implementation and 

organization of these modules may vary 

depending on the system architecture and 

the design choices made by the developers. 
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VII. CONCLUSION 

 

In conclusion, machine learning 

techniques have shown great promise in the 

detection of Android malware. By 

leveraging the power of algorithms and 

large datasets, these techniques have the 

potential to effectively identify and classify 

malicious applications, thereby enhancing 

the security of Android devices. 

Through the use of various machine 

learning algorithms, such as decision trees, 

support vector machines, random forests, 

and deep learning models, researchers and 

developers have been able to create robust 

malware detection systems. These models 

can analyze a wide range of features, 

including permissions, API calls, network 

behavior, code structures, and resource 

usage, to 

distinguish between benign and malicious 

apps. 

The advantages of using machine learning 

for Android malware detection include the 

ability to automate the process, handle large 

volumes of data efficiently, and adapt to 

evolving threats. Machine learning models 

can learn from past data and improve their 

detection capabilities over time, making 

them adept at identifying new and emerging 

malware strains. 

However, it is important to note that the 

effectiveness of machine learning-based 

malware detection systems depends on the 

quality and diversity of the training data. As 

malware authors continuously evolve their 

techniques to evade detection, it is crucial to 

maintain up-to-date datasets and constantly 

update the models with new samples. 

Additionally, machine learning-based 

detection systems may encounter challenges 

such as false positives and false negatives. 

Striking the right balance between detection 

accuracy and minimizing false alarms 

remains a significant area of research and 

development. 

In conclusion, machine learning techniques 

offer powerful tools for detecting Android 

malware. While there are still ongoing 

challenges, advancements in this field 

continue to enhance the security of Android 

devices and protect users from potential 

threats. 



 
 

 
 

 

92                                                    JNAO Vol. 15, Issue. 1, No.15 :  2024 

VIII FUTURE ENHANCEMENT 

Feature engineering and selection: 

Researchers can explore new features and 

improve feature engineering techniques to 

capture more meaningful information about 

the behavior and characteristics of 

malicious apps. Additionally, feature 

selection methods can be employed to 

identify the most relevant features and 

reduce the dimensionality of the data, which 

can improve the efficiency and 

performance of the detection models. 

Ensemble learning: Ensemble learning 

techniques, such as combining multiple 

models or classifiers, can be explored to 

enhance the accuracy and robustness of 

malware detection. By leveraging the 

strengths of different models, ensemble 

methods can effectively reduce false 

positives and false negatives, leading to 

improved overall performance. 

Adversarial machine learning: As malware 

authors constantly adapt their techniques to 

evade detection, incorporating adversarial 

machine learning methods can help create 

more resilient detection systems. 

Adversarial training can expose machine 

learning models to modified or obfuscated 

malware samples, forcing them to learn and 

defend against adversarial attacks, thus 

improving their generalization capabilities. 

Explainability and interpretability: 

Enhancing the explainability and 

interpretability of machine learning models 

can provide insights into the reasoning 

behind the detection decisions. This can 

aid 

in understanding the characteristics and 

patterns of malware, making it easier to 

develop effective countermeasures and 

improve the trustworthiness of the detection 

system. 

Online and real-time detection: Developing 

real-time and online malware detection 

systems can provide immediate protection to 

users, especially against rapidly spreading and 

evolving malware threats. This requires the 

development of lightweight models and 

efficient algorithms that can analyze and 

classify apps in real-time, without significant 

performance impact. 

Incorporating user behavior analysis: 

Integrating user behavior analysis into the 

detection process can provide a holistic 

approach to malware detection. By 

considering user interactions, app usage 

patterns, and contextual information, machine 

learning models can identify anomalous 

behaviors and detect potentially harmful 

activities, enhancing the detection accuracy 

and reducing false positives. 

Collaborative and federated learning: 

Collaborative learning approaches can 

leverage the collective intelligence of multiple 

devices or users to improve the detection 

accuracy. Federated learning, in particular, 

allows models to be trained across 

decentralized devices while preserving data 

privacy, enabling a more comprehensive and 

diverse training process. 

Continuous learning and adaptive models: 

Creating models that can learn and adapt 

continuously to new malware samples and 
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evolving threats is crucial. This involves the 

development of techniques that can update 

models with the latest data, incorporating 

feedback from users and security experts to 

stay ahead of emerging malware variants. 
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