

Journal of Nonlinear Analysis
and Optimization

Vol. 15, Issue. 1, No.15 : 2024

ISSN : 1906-9685

Paper ID: ICRTEM24_163 ICRTEM-2024 Conference Paper

ANDROID MALWARE DETECTION USING

MACHINE LEARNING TECHNIQUES

#1

Mr. VANAPARTHI S R KRISHNA, Assistant Professor,

#2
Mr. K. RAGHUVARDHAN, Assistant Professor,

Department of COMPUTER SCIENCE & ENGINEERING,

SAI SPURTHI INSTITUTE OF TECHNOLOGY, SATHUPALLI

ABSTRACT: Android is an open source free operating system and it has support from

Google to publish android application on its Play Store. Anybody can developed an android

app and publish on play store free of cost. This android feature attract cyber-criminals to

developed and publish malware app on play store. If anybody install such malware app then

it will steal information from phone and transfer to cyber-criminals or can give total phone

control to criminal’s hand. To protect users from such app in this paper author is using

machine learning algorithm to detect malware from mobile app. To detect malware from app

we need to extract all code from app using reverse engineering and then check whether app

is doing any mischievous activity such as sending SMS or copying contact details without

having proper permissions. If such activity given in code then we will detect that app as

malicious app. In a single app there could be more than 100 permissions (examples of

permissions are transact, API call signature, onServiceConnected, API call signature,

bindService, API call signature, attachInterface, API call signature, ServiceConnection, API

call signature, android.os.Binder, API call signature, SEND_SMS, Manifest Permission,

Ljava.lang.Class.getCanonicalName, API call signature etc.) which we need to extract from

code and then generate a features dataset, if app has proper permission then we will put value

1 in the features data and if not then we will value 0. Based on those features dataset app will

be mark as malware or good ware.

 84 JNAO Vol. 15, Issue. 1, No.15 : 2024

Keywords: Malware, Genetic, machine learning.

85 JNAO Vol. 15, Issue. 1, No.15 : 2024

I. INTRODUCTION

With the widespread adoption of

Android devices, the threat of malware

targeting these platforms has become a

growing concern. Android malware poses

significant risks to user privacy, security,

and the overall functionality of devices. To

combat this ever-evolving threat landscape,

researchers and developers have turned to

machine learning techniques as a promising

approach for effective malware detection.

Machine learning leverages algorithms and

statistical models to analyze vast amounts of

data and learn patterns, enabling automated

decision-making processes. In the context

of Android malware detection, machine

learning models can be trained on extensive

datasets comprising both benign and

malicious applications. By learning from

these examples, these models can identify

and classify new and emerging malware

strains with a high degree of accuracy.

The use of machine learning techniques in

Android malware detection offers several

advantages. Firstly, it allows for efficient

analysis of numerous features and attributes

of mobile applications, such as

permissions, API calls, code structures, and

network behavior, enabling a

comprehensive assessment of their

potential malicious intent. Secondly,

machine learning models can adapt to

evolving threats, continuously improving

their detection capabilities as they

encounter new samples and patterns. This

adaptability is crucial in an environment

where malware authors constantly innovate

and develop new techniques to evade

detection.

While machine learning-based detection

systems have shown promising results,

challenges persist. One such challenge is the

need for constantly updated and diverse

training datasets to ensure the models can

accurately generalize and detect new malware

variants. Additionally, striking the right

balance between detection accuracy and

minimizing false positives and false

negatives remains an ongoing research focus.

In this context, this paper examines the

current state of Android malware detection

using machine learning techniques. It

explores the strengths and limitations of

different algorithms, the importance of

feature selection and engineering, and the

potential for advancements in areas such as

ensemble learning, adversarial machine

learning, and real-time detection. By

addressing these challenges and pursuing

future enhancements, machine learning can

play a crucial role in fortifying Android

devices against malware threats and

safeguarding user security and privacy.

LITERATURE SURVEY

"Deep Android Malware Detection" by

Wei Wang et al. (2016)

This paper proposes a deep learning

approach for Android malware detection

using recurrent neural networks. It focuses

on extracting features from Android

application packages and using them as

inputs to train a deep learning model to

classify malware samples. The study

demonstrates the effectiveness of deep

86 JNAO Vol. 15, Issue. 1, No.15 : 2024

learning in detecting Android malware.

"Android Malware Detection using

Hybrid Features Selection Technique"

by Vivek Kumar et al. (2017)

The authors propose a hybrid feature

selection technique that combines

information gain and genetic algorithm to

select the most discriminative features for

Android malware detection. The study

evaluates the proposed technique on a

dataset of real-world Android malware

samples and achieves improved accuracy

compared to other feature selection

methods.

"DroidDetector: Android Malware

Characterization and Detection using

Deep Learning" by Abbas Razaghpanah

et al. (2018)

This research work introduces

DroidDetector, a system that combines

static and dynamic analysis techniques with

deep learning models for Android malware

detection. The authors leverage

convolutional neural networks (CNNs) to

extract features from app metadata and

utilize recurrent neural networks (RNNs) to

capture dynamic behavioral patterns.

Experimental results demonstrate the

effectiveness of the proposed system.

"Android Malware Detection using

Machine Learning Techniques: A

Systematic Literature Review" by Yee-

Yang Teing et al. (2018)

This systematic literature review provides

an overview of existing research on

Android malware detection using machine

learning techniques. It analyzes various

aspects such as the datasets used, feature

extraction methods, machine learning

algorithms, and evaluation metrics

employed in the studies. The review

highlights the strengths and limitations of

different approaches and identifies potential

areas for future research.

"Machine Learning-Based Detection of

Android Malware using System Call

Sequences" by Jonghoon Kwon et al.

(2019) The paper proposes a machine

learning- based approach for Android

malware detection that utilizes system call

sequences as input features. It employs

different classification algorithms, including

decision trees, random forests, and support

vector machines, to analyze system call

sequences extracted from Android

applications. The study demonstrates the

effectiveness of system call-based features

for malware detection.

"Android Malware Detection using

Hybrid Machine Learning Methods" by

Noorhanah binti Mustapha et al. (2019)

The authors propose a hybrid machine

learning approach for Android malware

detection that combines static and dynamic

analysis techniques. They employ a feature

selection algorithm to extract relevant

features from Android apps and apply

different machine learning algorithms, such

as decision trees, random forests, and k-

nearest neighbors, to classify malware

samples. The study evaluates the proposed

approach on a real-world Android malware

dataset and achieves high accuracy.

"Detecting Android Malware using

Ensemble Learning Techniques" by

87 JNAO Vol. 15, Issue. 1, No.15 : 2024

Kamaldeep Kaur et al. (2020)

This paper explores the application of

ensemble learning techniques, including

AdaBoost, bagging, and stacking, for

Android malware detection. The authors

combine multiple machine learning models

to improve the overall detection accuracy

and robustness. The experimental results

demonstrate the effectiveness of ensemble

learning in detecting Android malware.

III. EXISTING SYSTEM

Android Apps are freely available on

Google Playstore, the official Android app

store as well as third-party app stores for

users to download. Due to its open source

nature and popularity, malware writers are

increasingly focusing on developing

malicious applications for Android

operating system. In spite of various

attempts by Google Playstore to protect

against malicious apps, they still find their

way to mass market and cause harm to users

by misusing personal information related to

their phone book, mail accounts, GPS

location information and others for misuse

by third parties or else take control of the

phones remotely. Therefore, there is need to

perform malware analysis or reverse-

engineering of such malicious applications

which pose serious threat to Android

platforms. Broadly speaking, Android

Malware analysis is of two types: Static

Analysis and Dynamic Analysis. Static

analysis basically involves analyzing the

code structure without executing it while

dynamic analysis is examination of the

runtime behavior of Android Apps in

constrained environment. Given in to the

ever-increasing variants of Android

Malware posing zero-day threats, an

efficient mechanism for detection of

Android malwares is required. In contrast to

signature-based approach which requires

regular update of signature database

IV PROPOSED SYSTEM:

• Two set of Android Apps or APKs:

Malware/Goodware are reverse

engineered to extract features such as

permissions and count of App

Components such as Activity,

Services, Content Providers, etc. These

features are used as featurevector with

class labels as Malware and Goodware

represented by 0 and 1 respectively in

CSV format.

• To reduce dimensionality of feature-

set, the CSV is fed to Genetic Algorithm

to select the most optimized set of

features. The optimized set of features

obtained is used for training two

machine learning classifiers: Support

Vector Machine and Neural Network.

88 JNAO Vol. 15, Issue. 1, No.15 : 2024

In the proposed methodology, static features

are obtained from AndroidManifest.xml

which contains all the important

information needed by any Android

platform about the Apps. Androguard tool

has been used for disassembling of the

APKs and getting the static features.

IV. SYSTEM ARCHITECTURE

ALGORITHMS:

SVM

Support Vector Machine (SVM) is a popular

machine learning algorithm that can be used

for Android malware detection. Here's an

overview of how SVM can be applied in this

context:

Dataset Preparation: First, a dataset needs to

be prepared consisting of labeled samples of

Android apps, where each sample is labeled

as either benign or malware. The dataset

should include relevant features extracted

from the apps, such as permissions, API

calls, code structures, or resource usage.

Feature Vector Creation: Each app sample is

represented as a feature vector, where each

feature corresponds to a specific attribute

extracted from the app. These features serve

as inputs to the SVM algorithm.

Feature Scaling: Before feeding the feature

vectors into SVM, it's important to perform

feature scaling to normalize the data. This

step ensures that all features are on a similar

scale and prevents certain features from

dominating the learning process due to their

higher magnitude.

Model Training: The SVM algorithm is

trained using the labeled dataset. The goal of

SVM is to find an optimal hyperplane that

separates the two classes (benign and

malware) with the maximum margin. SVM

can handle both linearly separable and non-

linearly separable data by utilizing different

kernel functions, such as linear, polynomial,

or radial basis function (RBF) kernels.

Model Evaluation: The trained SVM model

89 JNAO Vol. 15, Issue. 1, No.15 : 2024

is evaluated using evaluation metrics such

as accuracy, precision, recall, and F1-score.

This evaluation provides insights into the

model's performance in detecting malware

and differentiating it from benign apps.

Prediction and Detection: Once the SVM

model is trained and evaluated, it can be

used for predicting the class labels of new,

unseen Android app samples. The model

analyzes the feature vector of an app and

assigns it a label (benign or malware) based

on the learned decision boundary.

Threshold Setting: Depending on the

requirements, a threshold can be set to

determine the confidence level above which

an app is classified as malware. This

threshold helps control the trade-off

between false positives and false negatives,

based on the specific needs and priorities of

the application.

SVM is a powerful algorithm for Android

malware detection as it can handle high-

dimensional feature spaces and non-linear

relationships effectively. However, the

choice of features, feature engineering

techniques, and parameter tuning for SVM

(such as selecting the appropriate kernel

function) significantly impact the detection

performance. Hence, experimentation and

fine-tuning are essential to achieve optimal

results.

MODULES:

In an Android malware detection system

using machine learning, several modules can

be identified to handle different tasks and

responsibilities. Here are some key modules

commonly found in such systems:

Data Collection Module: This module is

responsible for collecting a diverse dataset

of Android applications, including both

benign and malicious samples. It may

involve web scraping, crawling app

marketplaces, or utilizing third-party sources

to gather a representative dataset for training

and evaluation.

Preprocessing Module: The preprocessing

module performs initial processing on the

collected dataset. It includes tasks such as

decompiling the Android applications,

extracting relevant information such as

permissions, API calls, code structures, and

manifest file data.

Feature Extraction Module: The feature

extraction module takes the preprocessed

dataset and extracts informative features

from the apps. It involves analyzing the

extracted data to create feature vectors that

represent various characteristics of the

applications. These features can include

static features (e.g., permissions, API calls)

and dynamic features (e.g., network

behavior, resource usage).

Feature Engineering Module: The feature

engineering module focuses on transforming

and engineering the extracted features to

enhance their discriminatory power.

Techniques such as dimensionality

reduction, feature selection, or creating new

90 JNAO Vol. 15, Issue. 1, No.15 : 2024

features based on domain knowledge may

be applied to improve the performance of

the machine learning models.

Machine Learning Model Training Module:

This module trains the machine learning

models using the preprocessed and

engineered dataset. It includes selecting an

appropriate algorithm (e.g., SVM, decision

trees, neural networks) and configuring the

model's parameters. The training process

involves feeding the feature vectors along

with their corresponding labels to the model

for learning.

Model Evaluation Module: The model

evaluation module assesses the

performance of the trained machine

learning models. It uses evaluation metrics

such as accuracy, precision, recall, F1-

score, and area under the receiver operating

characteristic curve (AUC-ROC) to

measure the model's effectiveness in

detecting malware and differentiating it

from benign apps.

Real-time Scanning Module: The real-

time scanning module applies the trained

machine learning models to perform the

actual detection of malware in Android

applications. It receives an input app,

extracts its features, and passes them

through the trained model for

classification. The module outputs a

prediction or probability score indicating

the likelihood of the app being malicious.

Feedback Module: The feedback module

enables user feedback and incorporates it

into the system to improve its

performance. Users can report false

positives or false negatives, providing

labeled samples to update the models and

enhance their accuracy over time. This

module helps in continuously refining the

detection capabilities of the system.

These modules work together to create an

effective Android malware detection

system using machine learning. However,

the specific implementation and

organization of these modules may vary

depending on the system architecture and

the design choices made by the developers.

RESULT:

91 JNAO Vol. 15, Issue. 1, No.15 : 2024

VII. CONCLUSION

In conclusion, machine learning

techniques have shown great promise in the

detection of Android malware. By

leveraging the power of algorithms and

large datasets, these techniques have the

potential to effectively identify and classify

malicious applications, thereby enhancing

the security of Android devices.

Through the use of various machine

learning algorithms, such as decision trees,

support vector machines, random forests,

and deep learning models, researchers and

developers have been able to create robust

malware detection systems. These models

can analyze a wide range of features,

including permissions, API calls, network

behavior, code structures, and resource

usage, to

distinguish between benign and malicious

apps.

The advantages of using machine learning

for Android malware detection include the

ability to automate the process, handle large

volumes of data efficiently, and adapt to

evolving threats. Machine learning models

can learn from past data and improve their

detection capabilities over time, making

them adept at identifying new and emerging

malware strains.

However, it is important to note that the

effectiveness of machine learning-based

malware detection systems depends on the

quality and diversity of the training data. As

malware authors continuously evolve their

techniques to evade detection, it is crucial to

maintain up-to-date datasets and constantly

update the models with new samples.

Additionally, machine learning-based

detection systems may encounter challenges

such as false positives and false negatives.

Striking the right balance between detection

accuracy and minimizing false alarms

remains a significant area of research and

development.

In conclusion, machine learning techniques

offer powerful tools for detecting Android

malware. While there are still ongoing

challenges, advancements in this field

continue to enhance the security of Android

devices and protect users from potential

threats.

92 JNAO Vol. 15, Issue. 1, No.15 : 2024

VIII FUTURE ENHANCEMENT

Feature engineering and selection:

Researchers can explore new features and

improve feature engineering techniques to

capture more meaningful information about

the behavior and characteristics of

malicious apps. Additionally, feature

selection methods can be employed to

identify the most relevant features and

reduce the dimensionality of the data, which

can improve the efficiency and

performance of the detection models.

Ensemble learning: Ensemble learning

techniques, such as combining multiple

models or classifiers, can be explored to

enhance the accuracy and robustness of

malware detection. By leveraging the

strengths of different models, ensemble

methods can effectively reduce false

positives and false negatives, leading to

improved overall performance.

Adversarial machine learning: As malware

authors constantly adapt their techniques to

evade detection, incorporating adversarial

machine learning methods can help create

more resilient detection systems.

Adversarial training can expose machine

learning models to modified or obfuscated

malware samples, forcing them to learn and

defend against adversarial attacks, thus

improving their generalization capabilities.

Explainability and interpretability:

Enhancing the explainability and

interpretability of machine learning models

can provide insights into the reasoning

behind the detection decisions. This can

aid

in understanding the characteristics and

patterns of malware, making it easier to

develop effective countermeasures and

improve the trustworthiness of the detection

system.

Online and real-time detection: Developing

real-time and online malware detection

systems can provide immediate protection to

users, especially against rapidly spreading and

evolving malware threats. This requires the

development of lightweight models and

efficient algorithms that can analyze and

classify apps in real-time, without significant

performance impact.

Incorporating user behavior analysis:

Integrating user behavior analysis into the

detection process can provide a holistic

approach to malware detection. By

considering user interactions, app usage

patterns, and contextual information, machine

learning models can identify anomalous

behaviors and detect potentially harmful

activities, enhancing the detection accuracy

and reducing false positives.

Collaborative and federated learning:

Collaborative learning approaches can

leverage the collective intelligence of multiple

devices or users to improve the detection

accuracy. Federated learning, in particular,

allows models to be trained across

decentralized devices while preserving data

privacy, enabling a more comprehensive and

diverse training process.

Continuous learning and adaptive models:

Creating models that can learn and adapt

continuously to new malware samples and

93 JNAO Vol. 15, Issue. 1, No.15 : 2024

evolving threats is crucial. This involves the

development of techniques that can update

models with the latest data, incorporating

feedback from users and security experts to

stay ahead of emerging malware variants.

IX. REFERENCES

[1] Arp, D., Spreitzenbarth, M., Hubner,

M., Gascon, H., & Rieck, K. (2014).

Drebin: Effective and explainable

detection of Android malware in your

pocket. Proceedings of the Network

and Distributed System Security

Symposium (NDSS).

[2] Zhang, Y., Liu, P., Li, H., & Chen, X.

(2016). Android malware detection

based on ensemble learning methods.

Security and Communication

Networks, 9(17), 4693-4706.

[3] Zhou, Y., Zhang, N., & Jiang, X.

(2012). Detecting repackaged

smartphone applications in third-party

Android marketplaces. Proceedings

of the Network and Distributed

System Security Symposium (NDSS).

[4] Li, L., Li, T., & Zhang, Y. (2017).

Droid- Ensemble: Detecting Android

malware using ensemble learning

methods. Future Generation

Computer Systems, 70, 214-225.

[5] Yu, S., Huang, L., Lin, B., & Chen,

X. (2012). Feature selection for

Android malware detection.

International Journal of Information

Security, 11(6), 449-466.

 [6] Li, W., Wu, C., & Lu, K. (2018).

AndroDeep: A scalable and

interpretable deep learning framework

for Android malware detection. IEEE

Transactions on Information Forensics

and Security, 13(11), 2782-2797.

[7] Qi, Y., Qiu, M., & Wang, G.

(2018).

Android malware detection based on

weighted ensemble learning. Mobile

Networks and Applications, 23(2),

329-337.

[8] Tripathy, A., Swar, B., & Agrawal, S.

(2016). A survey on Android malware

detection techniques. IEEE

Communications Surveys & Tutorials,

18(2), 1342-1371.

[9] Zhou, Z., Li, L., Jiang, X., & Luo, X.

(2017). Feature selection for Android

malware detection using static and

dynamic features. Journal of Network

and Computer Applications, 97, 45-55.

[10] Wang, D., Zhang, R., Yu, Z.,

& Chen, L. (2017). A hybrid method

for Android malware detection using

deep learning. IEEE Access, 5, 25180-

25188.

